

Laboratorio prove su Materiali da Costruzione & Indagini Strutturali

SEMINARIO

INDAGINI STRUTTURALI

ESECUZIONE DI INDAGINI SULLE STRUTTURE ESISTENTI E SUI TERRENI DI FONDAZIONE: DALLA TEORIA ALLA PRATICA

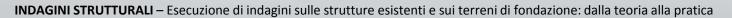
Modalità di esecuzione delle indagine ed elaborazione dei risultati Esempi e casi reali

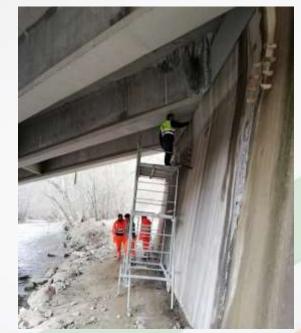
Relatori Ediltest s.r.l.: Ing. Antonello CONFORTO - Ing. Agostino SCHIAVONE

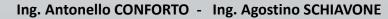
Laboratorio prove su Materiali da Costruzione & Indagini Strutturali

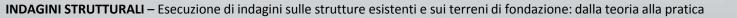
Un vasto campo di lavoro una realtà in continua evoluzione

- Indagini strutturali
- Prove su materiali da costruzione
- Prodotti per l'edilizia
- Servizi e consulenze

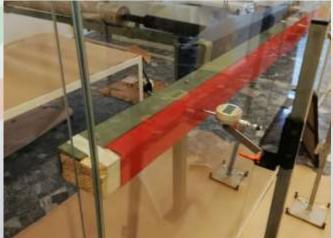








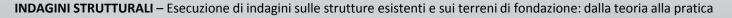
Ing. Antonello CONFORTO - Ing. Agostino SCHIAVONE



ANALIZZARE LA SALUTE DELLA STRUTTURA

«ANALISI» INDAGINI STRUTTURALI

STRUTTURE SISMORESISTETI IN MURATURA


- Non distruttive
- Moderatamente distruttive
- Distruttive

STRUTTURE SISMORESISTENTI IN CLS ARMATO

Supplemento ordinario alla "Gazzetta Ufficiale,, n. 42 del 20 febbraio 2018 - Serie generale

Species, with part - art, I, commu I Legge 27-02-2004, v. 46-Filiolo di Roma-

DELLA REPUBBLICA ITALIANA

PARTE PRIMA

Roma - Martedi, 20 febbraio 2018

GIDRMI NON FESTIVI


CHREZIONE E RIDAJIONE PRESSO IL MINISTERO DELLA GUSTICIA - UFFICIO PURBUCAZIONE LEGGI E DECRETI - MA ARENULA, TE - DOINS ROMA AURUNISTRAZIONE PRESSO LISTITUTO POLICRARICO E ZEGGA DELLO STATO - VIA SALARIA, 691 - DRISR ROMA - CENTRALINO GE-DIGRI - LIBERRIA DELLO STATO PRIZZA DEL PRIDI - SENIR ROMA:

N. 8

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

DECRETO 17 gennaio 2018.

Aggiornamento delle «Norme tecniche per le costruzioni».

11-2-2019

Supplemento entinurso o. 5 alla GAZZETTA UFFICIALE

Serie generale - n. 35

CIRCOLARI

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

CIRCOLARE 21 geomio 2019, n. 7 C.S.LL.PP.

Istrazioni per l'applicazione dell'«Aggiornamento delle «Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennais 2018.

IL MINISTRO DELLE INFRASTRUTTURE E DEI TRASPORTI

Con decreto ministeriale 17 gennaio 2018, pubblicato nel supplemento ordinario alla Gazzavia I (fliciale del 20 febbraio 2018, n. 42 è stato approvato l'aggiornamento delle «Nonne tecniche per le costruzioni», testo narmativo che raccoglie in forma unitaria le nocme che disciplinano la progettazione, l'esecuzione ed il collaudo delle costruzioni al fine di garantire, per stabiliti livelli di sicurezza, la pubblica incolumità.

Tale aggiornamento costituisce un più avanzato sistema normativo atto a formire i criteri generali di sicurezza, a precisare le azioni che devono essere stilizzate nel progetto, a definire le caratteristiche dei materiali ed a trattare gli sapetti attinenti alla sicurezza strutturale delle opere, moo e ed esistetti: impostazione condivisa dal mondo accademico, professionale e produttivo-impranditoriale.

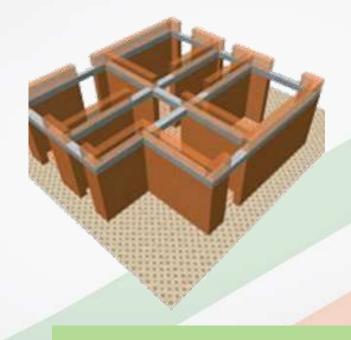
In considerazione del carattere innovativo di detto aggiornamento, si è ritenuto opportuno emanare la presente carcolare applicativa che sostimaisce la precedente circolare n. 617 del 2 febbraio 2009, relativa alle nome tocniche approvate con decreto ministeriale 14 gennato 2008, la quale ha lo scopo di fomire agli operatori del settore, ed in particolare ai progettisti, opportuni chiarimenti, indicazioni ed clementi informativi per una giù agevole ed univoca applicazione delle norme stesse.

Pur essendo state apportate numerose e significative modifiche rispetto alla precedente circolare, non è statu cumbuto l'impianto generale e l'articolazione del documento e, pertanto, il testo è articolato conformemente alle norme tecniche di cui mantiene la medesima strutturazione in capitoli e paragrafi, al fine di una più agevole consultazione.

La presente circulare è stata sotroposta al parere dell'Assemblea generale del Consiglio superiore dei lavori pubblici, che si è espressa favorevolmente in data 27 luglio 2018, con voto n. 29/2017.

Roma, 21 gennaio 2019

II Minneys: Tomporiti



QUALI PROVE

• LC1 = LIMITATE

• *LC2* = *ESTESE*

• LC3 = ESAUSTIVE



Tabella C8.5.V + Definizione orientativa dei livelli di rilievo e prova per edifici di c.a.

Livelle III le Ledat - Desce	Rilievo(dei dettagli costruttivi) ⁽ⁿ⁾	Prove (sui materiali) ^{(s)(2)(3)}						
Livello di Indagini e Prove	Per ogni elemento "primario" (trave, pilastro)							
limitato	La quantità e disposizione dell'armatura è verificata per almeno il 15% degli elementi	1 provino di cls. per 300 m² di piano dell'edificio, 1 campione di armatura per piano dell'edificio						
esteso	La quantità e disposizione dell'armatura è verificata per almeno il 35% degli elementi	2 provini di cls. per 300 m² di piano dell'edificio, 2 campioni di armatura per piano dell'edificio						
esaustivo	La quantità e disposizione dell'armatura è verificata per almeno il 50% degli elementi	3 provini di cls. per 300 m² di piano dell'edificio, 3 campioni di armatura per piano dell'edificio						

NOTE ESPLICATIVE ALLE TABELLE C8.5.V E C8.5.VI

Le percentuali di elementi da indagare ed il numero di provini da estrarre e sottoporre a prove di resistenza riportati nelle Tabelle C8.5.V e C8.5.VI hanno valore indicativo e vanno adattati ai singoli casi, tenendo conto dei seguenti aspetti:

- (a) Nel controllo del raggiungimento delle percentuali di elementi indagati ai fini del rilievo dei dettagli costruttivi si tiene conto delle eventuali situazioni ripetitive, che consentano di estendere ad una più ampia percentuale i controlli effettuati su alcuni elementi strutturali facenti parte di una serie con evidenti caratteristiche di ripetibilità, per geometria e ruolo uguali nello schema strutturale.
- (b) Le prove sugli acciai sono finalizzate all'identificazione della classe dell'acciaio utilizzata con riferimento alla normativa vigente all'epoca di costruzione. Ai fini del raggiungimento del numero di prove sull'acciaio necessario per acquisire il livello di conoscenza desiderato è opportuno tener conto dei diametri (nelle strutture in c.a.) o dei profili (nelle strutture in acciaio) di più diffuso impiego negli elementi principali, con esclusione delle staffe.
- (c) Ai fini delle prove sui materiali è consentito sostituire alcune prove distruttive, non più del 50%, con almeno il triplo di prove non distruttive, singole o combinate, tarate su quelle distruttive.
- (d) Il numero di provini riportato nelle tabelle C8.5.V e C8.5.VI può esser variato, in aumento o in diminuzione, in refazione alle caratteristiche di omogeneità del materiale. Nel caso del calcestruzzo in opera, tali caratteristiche sono spesso legate alle modalità costruttive tipiche dell'epoca di costruzione e del tipo di manufatto, di cui occorrerà tener conto nel pianificare l'indagine. Sarà opportuno, in tal senso, prevedere l'effettuazione di una seconda campagna di prove integrative, nel caso in cui i risultati della prima risultino fortemente disomogenei.

alori del coefficiente Esuggeriti per l'oggiornamento del valore medio dei parametri meccanici, secondo l'equazione [C8.5.4.31], con metodi di indogine diretta sulle proprietà meccaniche della muratura.

Metodo di prova di compressione diretta (su una porzione di parete muraria) netto piatto doppio di compressione e taglio (su un pannello isolato nella parete muzaria) – prova tipo Sheppard di compressione diagonale	Parametro	ĸ
	Е	1,5
Prova di compressione diretta (su una porzione di parete murana)	E	1
	E	1,5
Martinetto piatto doppio	£(*)	2 (*)
	G	1,5
rrova di compressione e tagno (su un panneno isotato netta parete muzana) – prova upo Sneppard	TO + fv0	- 1
National Parameters and Associated	G	1,5
rrova di compressione diagonale	100	1
Proya di taglio diretto sul giunto	fio.	2
Prove in laboratorio sui costituenti (**)	ft, fo, fa	2


Tabella C8.5.I.-Valo di riferimento dei parametri meccanici della muratura, da usarsi nei criteri di resistenza di seguito specificati (comportamento a tempi medio per diverse tipologie di muratura. I valori si riferiscomo a: f = resistenza media a compressione, 👝 = resistenza media a taglio in assenza di tensioni normali (con riferimento alla formula riportata, a proposito dei modelli di capocità, nel §C8.7.I.3), 👀 - resistenza media a taglio in assenza di teosioni normali (con riferimento alla formula riportata, a proposito dei modelli di capacità, nel §CS.7.1.3). E = valore medio del modulo di elasticità normale, G = valore medio del modulo di elasticità tangenziale, w = peso specifico modio.

Tipologia di muratura	f (N/mm ³)	(N/mm²)	f _{vo} (N/mm ²)	E (N/mm ²)	G (N/mm²)	(kN/m²)
	min-max	min-max		min-max	min-max	
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,0-2,0	0,018-0,032	- 83 - 83	690-1050	230-350	19
Muratura a conci sbozzafi, con paramenti di spessore disomogeneo (*)	2,0	0,035-0,051	100	1020-1440	340-490	20
Muratura in pietre a spacco con buona tessitura	2,6-3,8	0,056-0,074	- 10 - 10	1500-1980	500-660	21
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,4-2,2	0,028-0,042	- 3	900-1260	300-420	13+16(**)
Muratura a conci regolari di pietra tenera (tufo, calcarenite, ecc.,) (**)	2,0-3,2	0,04-0,08	0,1040,19	1200-1620	400-500	13 T 19()
Muratura a blocchi lapidei squadrati	5,8-8,2	0,09-0,12	0,18-0,28	2480-3300	800-1100	22
Muratura in mattoni pieni e malta di calce (***)	2,6-4,3	0.05-0,13	0,13-0,27	1200-1800	400-600	18
Muratura în mattoni semipieni con malta cementizia (es,: doppio UNI foratura ≤40%)	5,6-8,0	0,08-0,17	0,2041,36	3500-5600	875-1400	15

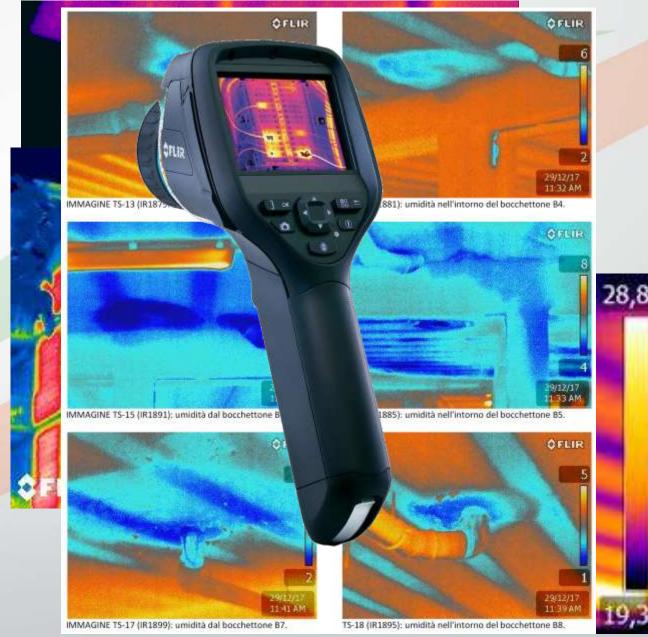
Tabella C85.11 -Conficienti correttivi massimi da applicarsi in presenza di: malta di caratteristiche buone; ricorsi o listature; sistematiche connessioni nto con iniczioni di malte: consulidamento con intonaco armato; ristilatura armata con connessione dei paramenti

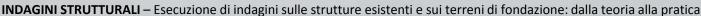
	5	itato di f	atto	le.	terventi	di consolida	mento
Tipologia di muratura	Malta buona	Ricorsi o listature	Connessione trasversale	Intezione di miscele leganti (*)	Interacoamabo (***)	Ristilatura armata con connessione dei paramenti (**)	Massimo coefficiente complessivo
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,5	1,3	1,5	2	2,5	1,6	3,5
Muratura a conci sbozzáti, con paramenti di spessore disomogeneo	1,4	1,2	1,5	1,7	2,0	1,5	3,0
Muratura in pietre a spacco con buona tessitura	1,3	1,1	1,3	1,5	1,5	1,4	2.4
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,5	1,2	1,3	1.4	1,7	1,1	2.0
Muratura a conci regolari di pietra tenera (tufo, calcarenite, ecc)	1,6	-	1,2	1,2	1,5	1,2	1,8
Muratura a blocchi lapidei squadrati	1,2	-3	1,2	1,2	1,2	18	1,4
Muratura în mattoni pieni e malta di calce	(***)	-51	1,3 (****)	1,2	1,5	1,2	1,8
Muratura in mattoni semipieni con malta cementizia (es,: doppio UNI foratura ≤40%)	1,2	2	142	9	1,3	ŭ.	1.3

Prove non distruttive o moderatamente distruttive:

- •Indagini Visive Muratura <
- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

Prove distruttive:




Prove non distruttive o moderatamente distruttive:

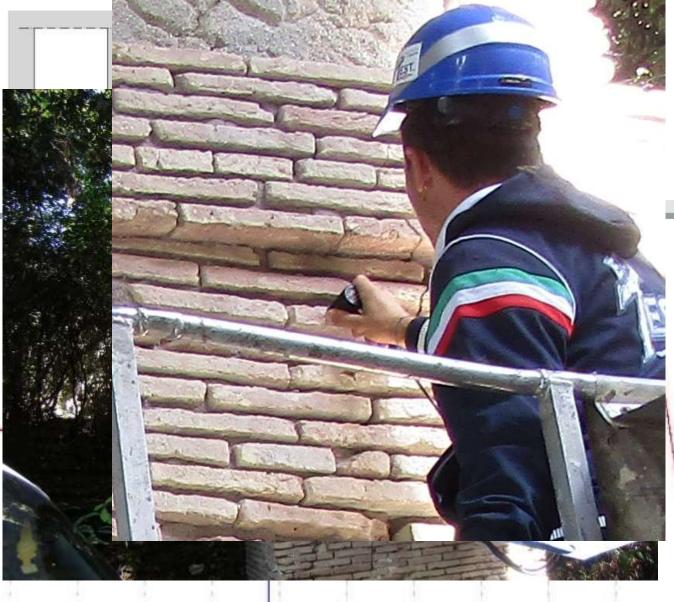
- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

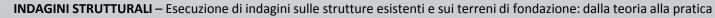
Prove distruttive:

Prove non distruttive o moderatamente distruttive:

- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

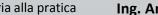
Prove distruttive:




Prove non distruttive o moderatamente distruttive:

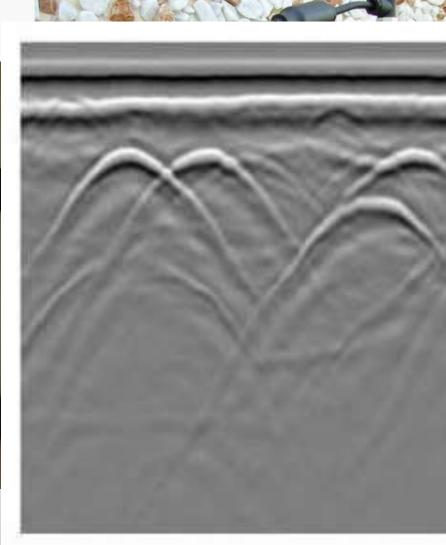
- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

Prove distruttive:


Prove non distruttive o moderatamente distruttive:

- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

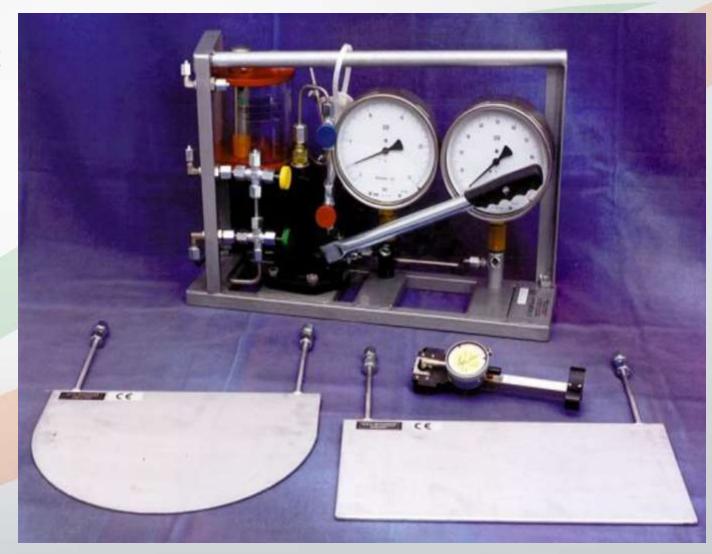
Prove distruttive:

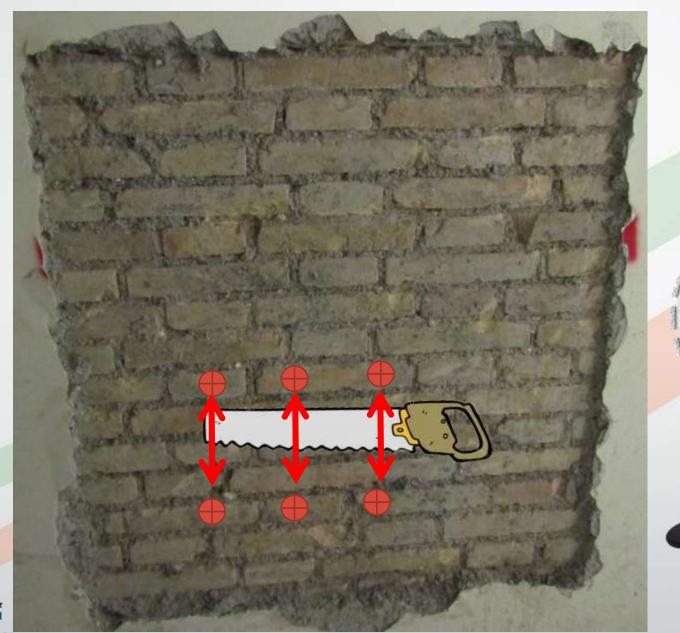


Prove non distruttive o moderatamente distruttive:

- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

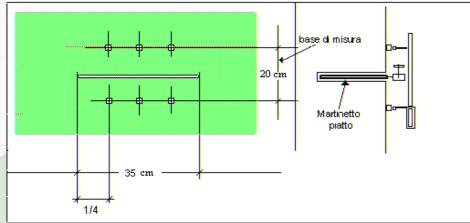
Prove distruttive:

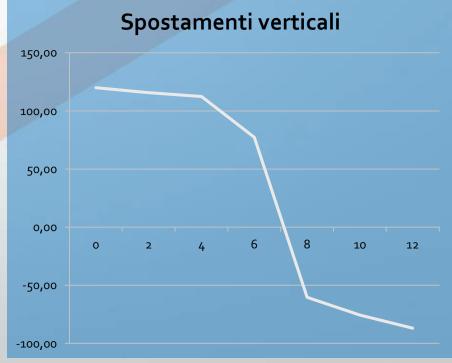


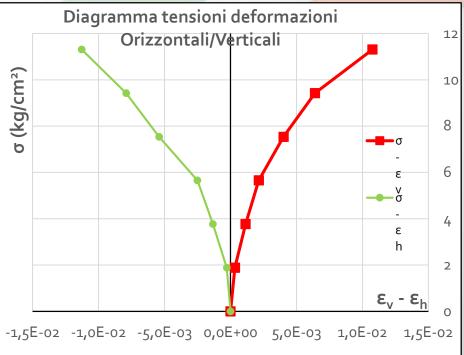

Prove non distruttive o moderatamente distruttive:

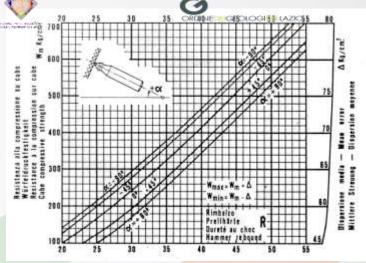
- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

Prove distruttive:









Prove non distruttive o moderatamente distruttive:

- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

Prove distruttive:

Prove non distruttive o moderatamente distruttive:

- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

Prove distruttive:

 Prove su pannelli a compressione; compressione diagonale e taglio Campione 17CA03615. Fotomicrografia al MPOM in luce trasmessa, sezione sottile, 80 x N+.

Tab. 11.10.II - Classi di malte a prestazione garantita

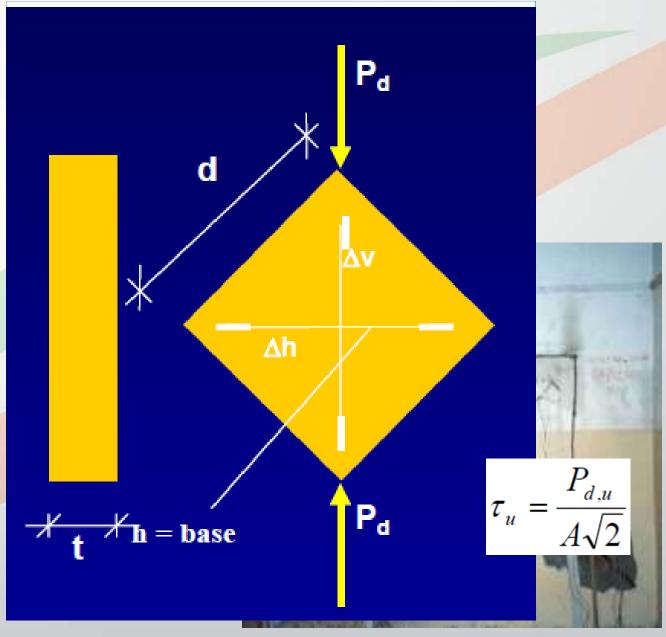
Classe	M 2,5	M 5	M 10	M 15	M 20	M d
Resistenza a compressione N/mm ²	2,5	5	10	15	20	d

d è una resistenza a compressione maggiore di 25 N/mm² dichiarata dal fabbricante

Classe	Tipo di malta	Composizione											
		Cemento	Calce aerea	Calce idraulica	Sabbia	Pozzolana							
M 2,5	Idraulica	Ĭ	- 1	1	3	, 1							
M 2,5	Pozzolanica		1	(—))	-	3							
M 2,5	Bastarda	1		2	9								
M 5	Bastarda	1	=	1	5	-							
M 8	Cementizia	2	=	1	8	<u></u>							
M 12	Cementizia	1	-	-	3	-							

PROVA DI CARICO SU SOLAIO

	STEP	ORA	CARICO Kg/m ²	Comp.	Comp.	Comp.	Comp.	Temp.
	0 (0')	08:40	0	0.00	0.00	0.00	0.00	7°
	1 (0')	08:50	150	-0.14	-0.15	-0.19	-0.11	7°
	2 (10')	09:00	150	-0.14	-0.15	-0.20	-0.12	7°
	3 (20')	09:10	150	-0.14	-0.16	-0.20	-0.12	7°
	4 (0')	09:30	300	-0.27	-0.32	-0.36	-0.21	8°
	5 (10')	09:40	300	-0.27	-0.32	-0.36	-0.21	8°
	6 (20')	09:50	300	-0.27	-0.32	-0.36	-0.21	8°
	7 (0')	10:10	500	-0.42	-0.53	-0.59	-0.36	8°
	8 (10')	10:20	500	-0.43	-0.53	-0.59	-0.34	8°
	9 (20')	10:30	500	-0.43	-0.53	-0.59	-0.34	8°
	10 (30')	10:40	500	-0.44	-0.56	-0.61	-0.36	10°
	11 (0')	10:50	300	-0.32	-0.49	-0.51	-0.29	10°
	12 (10')	11:00	300	-0.32	-0.49	-0.51	-0.28	10°
	13 (30')	11:20	300	-0.31	-0.48	-0.51	-0.27	10°
	14 (0')	11:30	0	-0.05	-0.07	-0.05	-0.03	10°
7	15 (10')	11:40	0	-0.02	-0.07	-0.03	-0.02	10°
_	16 (20')	11:50	0	0.01	-0.06	-0.03	-0.01	10°



Prove non distruttive o moderatamente distruttive:

- Termografia
- Indagini soniche
- Endoscopia
- Radar/Elettromagnetici
- Martinetti piatti
- Prove sulla malta
- Prove di carico sui solai

Prove distruttive:

CALCESTRUZZO ARMATO:

Prove non distruttive:

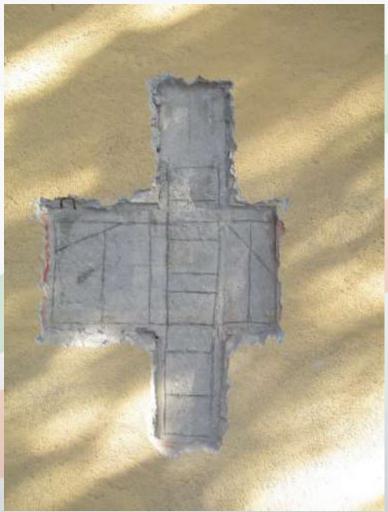
- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione

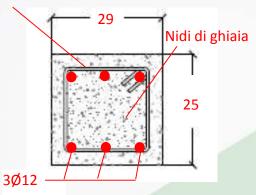
Prove distruttive:

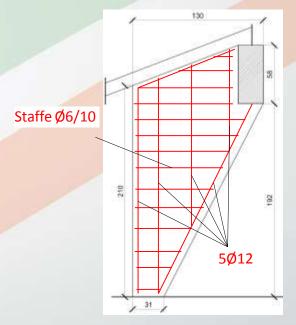
- Saggi sulle strutture
- Prelievo armatura
- Carotaggio



Pacometriche

...elaborazione delle pacometriche

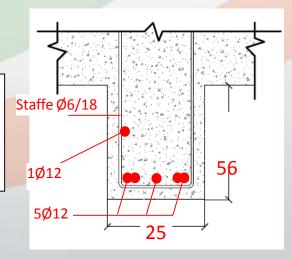

Staffe Ø6/10


N° Identificativo Prova: **P C01** Elemento Prova: **PILASTRO** Superficie Acciaio: **LISCIA**

Spess. Copriferro: 1 < c. f. < 3 cm

Note: **SOMMITA'**

PRESENTI NIDI DI GHIAIA



N° Identificativo Prova: P CO3

Elemento Prova: TRAVE DI APPOGGIO – INCROCIO TRAVI

Superficie Acciaio: LISCIA

Spess. Copriferro: 1 < c. f. < 3 cm Note: DOPPIO TONDO DI SPIGOLO

N° Identificativo Prova: **P C05**

Elemento Prova: PILASTRO SOTTOTETTO

Superficie Acciaio: LISCIA

Spess. Copriferro: 1 < c. f. < 3 cm

Note:

CALCESTRUZZO ARMATO:

Prove non distruttive:

- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione

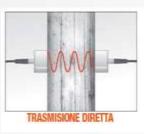
Prove distruttive:

- Saggi sulle strutture
- Prelievo armatura
- Carotaggio

						V	ALO	RI DI	BAT	TUT	A						
POS SCLEROMETRO	ΑГ	S9	48	49	3 42	52	5 44	6	7	50	50	10	11	12	MEDIA 48.1	MIN 42	MAX 52
PILASTRO	V8	lore vertito	56	59	45	64	49	52	60	60	60	56	52	60	56	45	64
POS SCLEROMETRO	ΑГ	S10	48	50	54	53	5	6	7	B 54	9	10	11	12	MEDIA 49	MIN. 46	MAX 54
PILASTRO	va	lore vertito	56	60	68	66	59	52	56	68	52	56	52		58	52	68
POS. SCLEROMETRO	ΑГ	S11	144	40	3	42	5	6	7	8	9	10	11	12	MEDIA 42.2	MIN.	MAX 46
TRAVE	100,000	lore rertito	49	41	41	45	49	41	52	45	41	45	52	45	45	41	52
POS. SCLEROMETRO	ΑГ	S12	44	46	3 48	46	5 46	46	50	8	9	10	11	12 50	MEDIA 46,6	MN. 44	MAX 50
PILASTRO	15,20	lore vertito	49	52	56	52	52	52	60	49	56	49	56	60	53	49	60

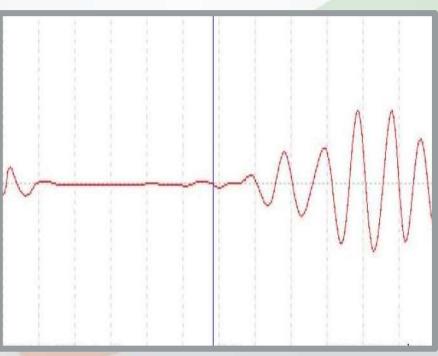
CALCESTRUZZO ARMATO:

Prove non distruttive:


- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione


Prove distruttive:

- Saggi sulle strutture
- Prelievo armatura
- Carotaggio

Prove non distruttive:

- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

Prove moderatamente distruttive:

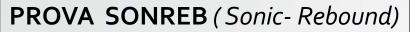
- Pull-off
- Pull-out
- Profondità di penetrazione

- Saggi sulle strutture
- Prelievo armatura
- Carotaggio

PROVE SCLEROMETRICHE																		
VALORI DI BATTUTA																		
					2	2	4	-	6	7	0	0	10	11	10	MEDI	MIN.	MAX.
POS. SCLEROMETRO	Α	S	8	28	32	32	34	26	34	34	36	36	30	34	30	A 32,4	26	36
	_	convertito		21	27	27	31	18	31	31	34	34	24	31	24	28	18	34
PILASTRO	valure	conventio		21	21	21	31	10	31	31	34	34	24	31	24	MEDI	10	34
				1	2	3	4	5	6	7	8	9	10	11	12	Α	MIN.	MAX.
POS. SCLEROMETRO	A	ST	5	30	24	32	34	30	28	28	34	36	34	28	28	30,6	24	36
TRAVE	valore	convertito		24	15	27	31	24	21	21	31	34	31	21	21	25 MEDI	15	34
				. 1	2	3	4	5	6	7	8	9	10	11	12	A	MIN.	MAX.
POS. SCLEROMETRO	A	S	10	30	36	38	36	38	34	30	38	28	30	30	28	33	28	38
PILASTRO	valore	convertito		24	34	38	34	38	31	24	38	21	24	24	21	29	21	38
				1	2	3	4	5	6	7	8	9	10	11	12	A	MIN.	MAX.
POS. SCLEROMETRO	A	S	12	38	40	34	37	37	35	38	43	40	38	40	40	38,3	34	43
PILASTRO	valore	convertito		38	41	31	36	36	32	38	47	41	38	41	41	38	31	47

	CALCOLO DELLE VELOCITA' ULTRASONICHE													
STAZIONE	ELEMENTO DIST. (cm) TEMPO (microsec.) VELOCITA' (m/s) VELOCITA' (m/s)													
			A	В	C	A	В	С						
US 1	PILASTRO	40,0	111,8	113,4	112,6	3578	3527	3552	3553					
US 2	TRAVE	30,0	85,4	85,1	87,0	3513	3525	3448	3495					
US 3	TRAVE	25,0	64,6	67,0	68,6	3870	3731	3644	3749					
US 4	PILASTRO	25,0	64,6	71,0	63,0	3870	3521	3968	3786					

			RESISTE	NZA PR	OBABI	LE -	MET	ODO	102	NREE	3		
STAZ.	STRUTTURA E		ELEMENTO	ELEMENTO RIMBALZO VELOCITA' RESISTENZE (N/mm²) Vedi formule (1-2					formule (1-27)		R _{cm}		
· · · · · · ·					122002111	-	recording (17, min) veur formule (12)						
				Is	Vm (m/s)	Rc (1)	Rc (2)	Rc (3)	Rc (4)	Rc (5)	Rc (6)	Rc (7)	N/mm²
1	P1	S1	PILASTRO	45,6	3553	34,8	33,0	27,6	37,2	32,7	27,9	33,2	32,3
2	P2	S2	TRAVE	43,5	3495	31,9	30,2	24,7	32,8	30,1	25,2	29,8	29,2
3	P3	S3	TRAVE	41,5	3749	34,2	34,1	27,8	35,7	32,2	28,2	33,4	32,2
4	P4	S4	PILASTRO	43,5	3786	37,0	36,7	30,4	39,9	34,5	30,7	36,7	35,1



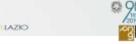
EQUAZIONI DI CORRELAZIONE TRA VELOCITA' E INDICE SCLEROMETRICO

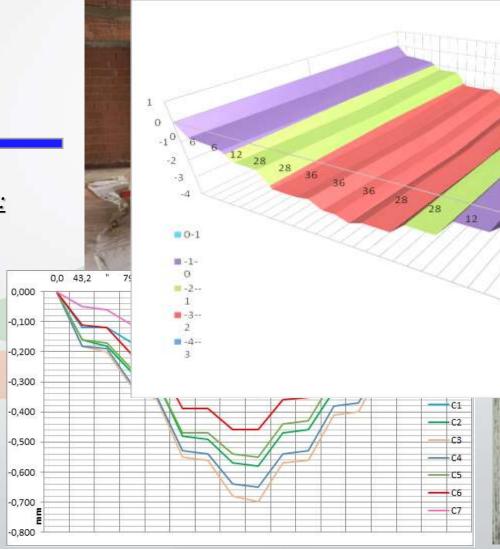
$R_c (N/mm^2) = 2,86 \times 10^{-2} \times Im^{1.2}$	46 x V ^{1,85}	$(N/mm^2, km/s)$	(Gasparik,	1984)
(1) $R_c(N/mm^2) = 1.2 \times 10^{-9} \times Im^{1.058} \times V^{2,446}$		(Di Leo,	Pascale,	1994)
$R_c(N/mm^2) = 7,695 \times 10^{-11} \times Im^{1.4} \times V^{2.6}$	$(N/mm^2, m/s)$	(Giacchetti,	Laquaniti,	1980)
R_c (N/mm ²) = 1,53 x 10 ⁻³ x (Im ² x	V ⁴) ^{0.611} (N/mn	n², km/s) (Arioglu,	Koyluoglu,	1996)
$R_c (N/mm^2) = 4.40 \times 10^{-7} \times (Im^2 \times Im^2)$	$(N/m)^{0.5634}$	nm², m/s) (Del Mo	onte et al.,	2004)
$R_c (N/mm^2) = 2,765 \times 10^{-10} \times Im^{1.311}$	$x = V^{2,487}$ (N/m)	m², m/s) (Bocca e	Cianfrone,	1983)
$R_c (N/mm^2) = 9.27 \times 10^{-11} \times Im^{1.4}$	x V ^{2.6}	$(N/mm^2, m/s)$	s) (RILEM,	1989)
(/)				

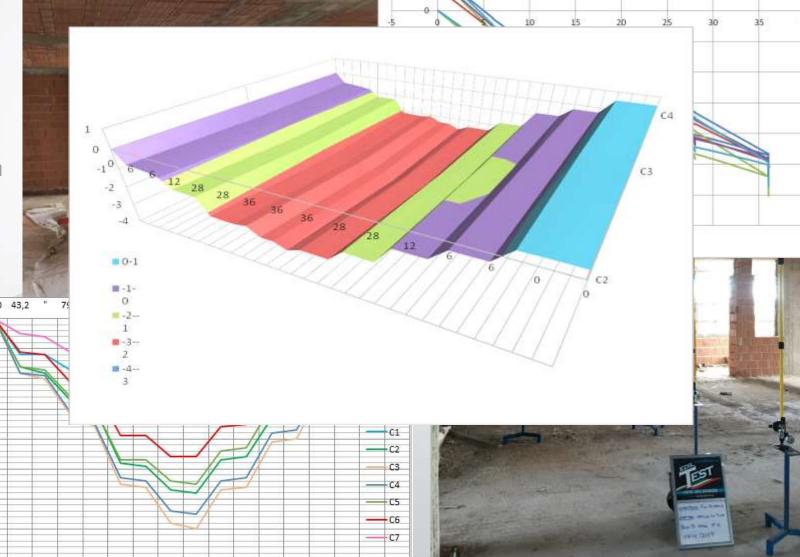
Ove: Im e' l'indice sclerometrico e V e' la velocità ultrasonica.

RESISTENZA PROBABILE - METODO SONREB

STAZ.	PROVA	ELEMENTO	RIMBALZO	VELOCITA'	R	RESISTENZE (N/mm²) Vedi formule (1-27)						R _{CM}
	37		Is	Vm (m/s)	Rc (1)	Rc (2)	Rc (3)	Rc (4)	Rc (5)	Rc (6)	Rc (7)	N/mm²
1	US 1 S	1 PILASTRO	46,1	4054	45,1	46,2	39,4	52,5	41,3	39,3	47,5	44,5
2	US 2 S	2 PILASTRO	40,6	3925	36,2	37,3	30,3	38,4	33,9	30,7	36,6	34,8
3	US 3 S	3 TRAVE	48,2	4532	58,6	63,6	56,1	74,8	52,5	55,0	67,6	61,1
4	US 4 S	4 TRAVE	57,0	4359	67,1	69,0	64,1	92,4	59,3	62,1	77,2	70,2




Prove non distruttive:


- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione

- Saggi sulle strutture
- Prelievo armatura
- Carotaggio

Ing. Antonello CONFORTO - Ing. Agostino SCHIAVONE

Prove non distruttive:

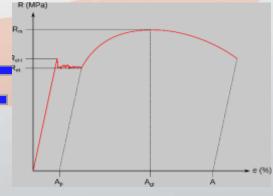
- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione

- Saggi sulle strutture
- Prelievo armatura
- Carotaggio

Prove non distruttive:


- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

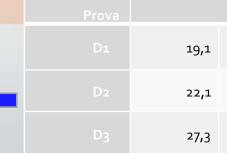
Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione

- Saggi sulle strutture
- Prelievo armatura
- Carotaggio

Prove non distruttive:

- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai


Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione

- Saggi sulle strutture
- Prelievo armatura
- Prove durometriche
- Carotaggio

ld. Prova			Indice Durez	Indice Medio Hrc	Resistenza Rm (Mpa)		
	19,1	23,9	21,2	18,5	20,8	20,7	739
	22,1	17,9	23,5	19,8	18,7	20,4	734
	27,3	25,7	23,5	28,1	21,9	25,3	827

Prove non distruttive:

- Pacometriche
- Sclerometriche
- Ultrasuoni
- Sonreb
- Prove di carico sui solai

Prove moderatamente distruttive:

- Pull-off
- Pull-out
- Profondità di penetrazione

- Saggi sulle strutture
- Prelievo armatura
- Carotaggio -

RISULTATI DELLE PROVE DI SCHIACCIAMENTO

CODICE	Elemento	Livello	PESO (g)	MV CLS (Kg/m³)	Ø (mm)	Altezza (mm)	Forza (KN)	$f_{opera} \ (MPa)$
CF 01	Fondazioni	FOND	1590	2219	97,0	97,0	342,5	46,4
CT 01	Pilastro	T	1581	2204	97 N	97 1	295 3	40,0

Tabella C11.2.6.I.- Fattore di disturbo in funzione della resistenza a compressione delle carote (H/D=1; d=100 mm)

fcamta[N/mm²]	10 ÷ 20	20 ÷ 25	25 ÷ 30	30 ÷ 35	35 ÷ 40	> 40
Fd	1.10	1.09	1.08	1.06	1.04	1.00

								•
C1 01	Pilastro	1	1599	2232	97,0	97,0	325,6	44,1
C1 02	Pilastro	1	1601	2235	97,0	97,0	249,2	33,7
C1 03	Pilastro	1	1599	2227	97,0	97,2	367,6	49,8
C1 04	Trave	1	1606	2242	97,0	97,0	191,1	25,9
C2 01	Pilastro	2	1612	2250	97,0	97,0	247,7	33,5
C2 02	Trave	2	1598	2228	97,0	97,1	214,9	29,1
C2 03	Pilastro	2	1589	2218	97,0	97,0	321,1	43,5
C2 04	Pilastro	2	1602	2231	97,0	97,2	263,1	35,6

Prove non distruttive:

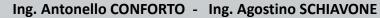
- Verifica delle saldature
- Verifica delle bullonature

Prove moderatamente distruttive:

- Estrazione provini da profili laminati
- Prove durometriche

Prove non distruttive:

- Verifica delle saldature
- Verifica delle bullonature


- Estrazione provini da profili laminati
- Prove durometriche

Prove non distruttive:

- Verifica delle saldature
- Verifica delle bullonature

Prove moderatamente distruttive:

- Estrazione provini da profili laminati
- Prove durometriche

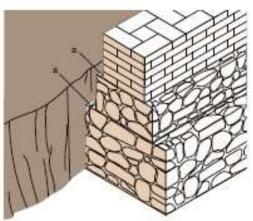
Ing. Antonello CONFORTO - Ing. Agostino SCHIAVONE

Prove non distruttive:

- Verifica delle saldature
- Verifica delle bullonature

Prove moderatamente distruttive:

- Estrazione provini da profili laminati
- Prove durometriche

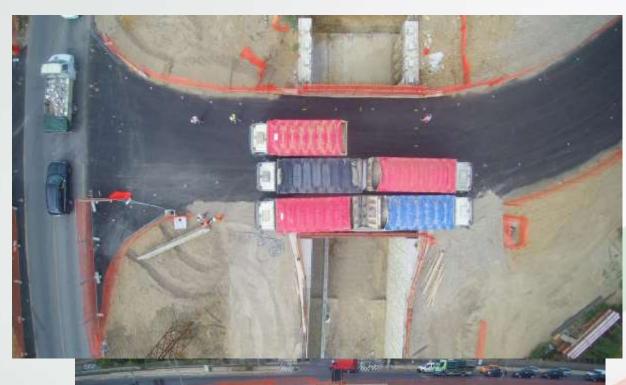


....e per le fondazioni?

Qualora sia necessario effettuare la valutazione della sicurezza della costruzione, la verifica del sistema di fondazione è obbligatoria solo se sussistono condizioni che possano dare luogo a fenomeni di instabilità globale o se si verifica una delle seguenti condizioni:

- nella costruzione siano presenti importanti dissesti attribuibili a cedimenti delle fondazioni o dissesti della stessa natura si siano prodotti nel passato;
- siano possibili fenomeni di ribaltamento e/o scorrimento della costruzione per effetto: di condizioni morfologiche sfavorevoli, di modificazioni apportate al profilo del terreno in prossimità delle fondazioni, delle azioni sismiche di progetto;
- siano possibili fenomeni di liquefazione del terreno di fondazione dovuti alle azioni sismiche di progetto.

COLLAUDI, MONITORAGGI E PROVE VARIE



Ing. Antonello CONFORTO - Ing. Agostino SCHIAVONE

